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by surface heating or cooling

Ahmet Pinarbasi

Cukurova University, Mechanical Engineering Department, 01330 Balcali, Adana, Turkey

Received 13 August 2000; revised 9 May 2001 and 14 August 2001; accepted 14 September 2001

Abstract

The linear stability of plane Poiseuille flow of two immiscible Newtonian liquids in a differentially heated channel is
considered. The equations of motion and energy are fully coupled via temperature-dependent fluid-viscosity coefficients.
A long-wave asymptotic formulation of the stability problem is presented together with numerical results for disturbances of
arbitrary wavelength. Two combinations of immiscible liquids are analyzed: silicone/water and oil/water (water at the bottom
layer in both cases). It is shown that an imposed wall temperature difference can be stabilizing or destabilizing depending on
the disturbance wavenumber and layer thickness ratio. Interfacial tension has a stabilizing effect on the interface. Stabilizing
influence of interfacial tension is observed at intermediate and large wavenumbers. Most importantly, for certain ranges of
the controlling dimensionless parameters, stable interfaces at all disturbance wavelengths can be attained. 2002 Éditions
scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The problem of maintaining stable interfaces in two-fluid viscous flows is of considerable interest to many modern
engineering flow processes. In the petroleum industry, for example, pumping costs in pipeline operations may be reduced
considerably by adding a low viscosity fluid into the system. Experimental investigations of two-fluid pipe flow indicate that
low viscosity fluids eventually encapsulate the more viscous fluids in both high and low Reynolds number flows [1,2]. A linear
stability analysis of isothermal two-layer pipe flow shows that the flow is stable when the more viscous fluid occupies most
of the pipe and that the volume ratio (or equivalently the layer thickness ratio) is a crucial factor in determining stable and
unstable operating states. Renardy [3] studied the stability of two-layer Couette flow in configurations involving a thin layer
near the wall and proved that while a thin layer of the more viscous liquid close to the wall is always linearly unstable, a thin
layer of the less viscous liquid adjacent to the wall can be stable for all wavelengths provided there is adequate surface tension.
These results have encouraged further research on the stability of two-fluid flow as applied to oil transportation and lubricated
squeezing flows [4].

Interface stability is also of critical importance in coextrusion processes in the plastics industry where both planar and
axisymmetric multi-layer flows are relevant. The coextrusion operation consists of combining several melt streams in a
feedblock. The combined melt stream then flows to the die where the layers take their final dimensions. Under certain
operating conditions, interfacial instabilities arise with detrimental effects on mechanical, optical, and barrier properties of
the final product [5]. Efficient and robust control of the flow and suppression of instabilities is then of paramount importance in
maintaining stable operating states.
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Interfacial instabilities in two-layer viscous flows have been investigated by various authors under isothermal conditions.
In his pioneering work, Yih [6] studied the stability of the interface using a long-wave asymptotic technique and showed that
viscosity stratification alone can cause instability even at vanishingly small Reynolds numbers. Recent investigations examined
the effect of disturbances of arbitrary wavelength on the stability of the interface for a wide range of viscosity, density, and
thickness ratios [7–9].

In industrial coextrusion operations, fluid layers are frequently fed into the die at different temperatures in order to match
viscosities and thus avoid interfacial instability. In general, considerable difficulties arise in adjusting material properties by
varying temperatures [10]. Heat transfer and variable transport property effects on interfacial instability are poorly understood.
Anturkar et al. [11] studied the interfacial instability of two-layer flow incorporating the temperature dependence of material
properties but neglecting heat transfer across the layers and solving the standard isothermal stability equations. In a recent
study, Pinarbasi and Liakopoulos [12] examined the stability of nonisothermal Poiseuille flow of two Newtonian liquids with
temperature-dependent viscosity under the simplifying assumption of negligible temperature and viscosity fluctuations.

In the present study, the linear theory of interface stability for planar Poiseuille flow with heat transfer and variable viscosity,
including temperature and viscosity fluctuations is formulated. The linearized equations describing the evolution of small,
two-dimensional disturbances are derived for a differentially heated channel, and the stability problem is formulated as an
eigenvalue problem for a set of four ordinary differential equations. The eigenvalue problem is solved asymptotically in the
small wavenumber limit(α → 0) and numerically, by a pseudospectral method, for disturbances of arbitrary wavelength. The
effects of the applied wall temperature difference and interfacial tension on the flow stability are discussed.

2. Governing equations

Consider the flow of two immiscible incompressible Newtonian liquids in a channel formed by two long parallel plates
(Fig. 1). The flow is driven by a constant pressure gradient, and the channel walls are maintained at constant but different
temperatures. Assuming that temperature variations predominantly affect the viscosity distribution and that thermal conductivity
remains constant, the dimensionless governing equations (conservation of mass, momentum, and energy) take the form:

∇ · vk = 0, (1)
∂vk
∂t

+ vk · ∇vk = −∇pk

rk
+ 1

rk Re
∇ · (µk γ̇ k), (2)

∂Tk

∂t
+ vk · ∇Tk = mk

rk Re Prk
∇2Tk, (3)

where the dimensionless viscosity-temperature relation is assumed to be of the form

µk = µ̄k

µ̄01
= Ckmk exp

(
Dk

Tk

)
. (4)

The definitions of the non-dimensional variables are listed in Table 1. In Eqs. (1)–(4), subscriptk denotes the layer number
(k = 1,2; no summation overk), γ̇ k is the rate-of-strain tensor,vk = (uk, vk) is the velocity vector,pk denotes the pressure,
Tk denotes the temperature, andPrk = µ̄0kc̄pk/k̄k denotes the Prandtl number for thekth layer. Here,̄µ0, c̄p , andk̄ denote the

(a) (b)

Fig. 1. Flow geometry and thermal boundary conditions: (a) dimensional; (b) dimensionless.
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Table 1
Nondimensional variables. (Bars denote dimensional quantities.)

(x, y) (u, v) t p Tk µk mk rk Dk

(x̄, ȳ)

l̄1

(ū, v̄)

U0

t̄U0

l̄1

p̄

ρ̄1U
2
0

T k

d̄1

µ̄k

µ̄01

µ̄0k

µ̄01

ρ̄k

ρ̄1

d̄k

d̄1

viscosity, specific heat, and thermal conductivity of the fluids calculated at the reference temperature. Note thatCk , k = 1,2,
are dimensionless constants obtained from experimental temperature–viscosity curves and that (see Table 1)m2 is the viscosity
ratio at the reference temperature,r2 is the density ratio, andD2 is the viscosity-law exponent ratio. The Reynolds number is
defined asRe = ρ̄1U0l̄1/µ̄01, whereU0 is velocity at the interface and̄l1, ρ̄1, µ̄01 denote the thickness, density, and viscosity
(at the reference temperature) of layer 1 (top layer).

2.1. Basic state

In the undisturbed state, the flow is steady and fully developed. Considering a temperature profile that is independent ofx and
neglecting viscous dissipation, internal heat generation, and variable thermal conductivity effects, the energy balance equation
yields a linear temperature profile within each layer. This solution of the energy equation is realizable only for isothermal
channel walls. Note that the possibility of significant viscous dissipation exists in the coextrusion of viscous polymers. The
goal here is to observe the influence of an imposed temperature gradient, and therefore, viscous dissipation is neglected for
simplicity. Denoting the upper wall temperature byT A, the lower wall temperature byT B and enforcing the continuity of
temperature and heat flux at the interface, the dimensionless temperature distribution becomes

Tsk (y) = Dk(Sky + Qk), k = 1,2, (5)

whereSk = �TAk/d̄k ,Qk = (ε�TA2+T B)/d̄k ,A1 = K2/(K2+ε),A2 = A1/K2, ε = l̄2/l̄1 is the fluid-layer thickness ratio,
K2 = k̄2/k̄1 is the thermal conductivity ratio,�T = T A − T B is the applied wall temperature difference, and the subscripts

denotes conditions at the undisturbed state.
Thex-component of the momentum equation takes the form[

exp

(
1

Sky + Qk

)
u′
sk

]′
= Ek, k = 1,2, (6)

whereusk denotes the base velocity of thekth layer,Ek = Re(dp/dx)/(Ckmk), dp/dx is the dimensionless pressure gradient,
and primes denote differentiation with respect toy.

The associated boundary conditions (no-slip at the channel walls and continuity of velocity and shear stress at the interface)
are

us1(1) = us2(−ε) = 0, (7a)

us1(0) = us2(0), (7b)

µ1(0)u
′
s1
(0) = µ2(0)u

′
s2
(0). (7c)

The solution of Eq. (6) subject to Eq. 7(a–c) can be expressed in terms of exponential integrals:

us1(y) = E1

2S2
1

[
(S1y + Q1)(B1 − Q1 − 1+ S1y)exp

(
− 1

S1y + Q1

)

− (S1 +Q1)(B1 − Q1 − 1+ S1)exp

(
− 1

S1 + Q1

)

+ (B1 − 2Q1 − 1)

[
E

(
1

S1 + Q1

)
− E

(
1

S1y + Q1

)]]
, (8)

us2(y) = E2

2S2
2

[
(S2y + Q2)(B2 − Q2 − 1+ S2y)exp

(
− 1

S2y + Q2

)

− (Q2 − εS2)(B2 − Q2 − 1− εS2)exp

(
− 1

Q2 − εS2

)

+ (B2 − 2Q2 − 1)

[
E

(
1

Q2 − εS2

)
− E

(
1

S2y + Q2

)]]
, (9)
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whereE(x) = ∫ ∞
x (e−t /t)dt denotes the exponential integral,

B1 = (C2/C1)m2f3 + (S1/S2)f4

(C2/C1)m2f2 − f1
, B2 = S2

S1
B1,

and

f1 = Q2

S2
e
− 1

Q2 − Q2 − εS2

S2
e
− 1

Q2−εS2 + 1

S2

[
E

(
1

Q2 − εS2

)
− E

(
1

Q2

)]
,

f2 = Q1

S1
e
− 1

Q1 − Q1 + S1

S1
e
− 1

Q1+S1 + 1

S1

[
E

(
1

Q1 + S1

)
− E

(
1

Q1

)]
,

f3 = Q1 +Q2
1

S1
e
− 1

Q1 + (Q1 + S1)(S1 − Q1 − 1)

S1
e
− 1

Q1+S1 + 2Q1 + 1

S1

[
E

(
1

Q1 + S1

)
− E

(
1

Q1

)]
,

f4 = −Q2 + Q2
2

S2
e
− 1

Q2 + (Q2 − εS2)(εS2 + Q2 + 1)

S2
e
− 1

Q2−εS2 − 2Q2 + 1

S2

[
E

(
1

Q2 − εS2

)
−E

(
1

Q2

)]
.

Note that the pressure gradient dp/dx is determined by enforcing the conditionus1(0) = 1. ConstantsCk and d̄k , k = 1,2,
depend on the liquids considered and reference temperature chosen.

2.2. Linear stability analysis

In this section, the stability problem is formulated by the method of normal modes [13]. Due to the complexity of the
problem, the analysis is restricted to two-dimensional disturbances although there is no Squire’s theorem for two-layer Poiseuille
flow [7]. The velocity, pressure, temperature and viscosity fields are decomposed into two parts, the base fields and infinitesimal
disturbances:

uk(x, y, t) = usk (y) + ûk(x, y, t), vk(x, y, t) = v̂k(x, y, t),

pk(x, y, t) = psk (x) + p̂k(x, y, t). Tk(x, y, t) = Tsk (y) + T̂k(x, y, t),

µk(x, y, t) = µsk (y) + µ̂k(x, y, t). (10)

Substitution of Eq. (10) into Eqs. (1)–(3), subtraction of the base flow equations, and linearization lead to the disturbance
evolution equations:

∂ûk

∂x
+ ∂v̂k

∂y
= 0, (11)

∂ûk

∂t
+ usk

∂ûk

∂x
+ v̂k

dusk
dy

= − 1

rk

∂p̂k

∂x
+ µsk

Re rk

(
∂2ûk

∂x2
+ ∂2ûk

∂y2

)
+ µ′

sk

Re rk

(
∂ûk

∂y
+ ∂v̂k

∂x

)
+ u′

sk

Re rk

∂µ̂k

∂y

+ µ̂k

Re rk

d2usk

dy2
, (12a)

∂v̂k

∂t
+ usk

∂v̂k

∂x
= − 1

rk

∂p̂k

∂y
+ µsk

Re rk

(
∂2v̂k

∂y2
+ ∂2v̂k

∂x2

)
+ 2µ′

sk

Re rk

∂v̂k

∂y
+ u′

sk

Re rk

∂µ̂k

∂x
, (12b)

∂T̂k

∂t
+ usk

∂T̂k

∂x
+ v̂k

dTsk
dy

= 1

Re rk Prk

(
∂2T̂k

∂x2
+ ∂2T̂k

∂y2

)
, (13)

where primes denote differentiation with respect toy andk = 1,2.
The continuity equation can be satisfied by introducing a perturbation streamfunction,ψ̂k , for each layer, i.e.,

ûk = ∂ψ̂k

∂y
, v̂k = −∂ψ̂k

∂x
, k = 1,2.

Since the coefficients of the perturbation equations are independent ofx andt , it is assumed that all disturbances have time and
spatial dependence of the form(

ψ̂k, p̂k, T̂k , µ̂k

) = [
φk(y), fk(y), θk(y),Λk(y)

]
eiα(x−ct), k = 1,2, (14)

whereα is the wavenumber;c = cr + ici is the complex disturbance velocity; andφk , fk , θk , andΛk denote the spatially
varying velocity, pressure, temperature, and viscosity disturbance amplitudes, respectively. Note that instability is associated
with ci > 0.
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Substituting Eq. (14) into Eqs. (12)–(13) and eliminating the pressure perturbation terms by cross-differentiation, the
following stability equations are obtained:

iα Re rk
{
(usk − c)

(
φ′′
k − α2φk

) − u′′
sk
φk

} = µsk

(
φ′′′′
k − 2α2φ′′

k + α4φk
) + 2µ′

sk

(
φ′′′
k − α2φ′

k

) + µ′′
sk

(
φ′′
k + α2φk

)
+ u′

sk

(
Λ′′

k + α2Λk

) + 2u′′
sk
Λ′

k + u′′′
sk
Λk, k = 1,2, (15)

and

(iαrk Re Prk /mk)
[
(usk − c)θk − T ′

sk
φk

] = θ ′′
k − α2θk, k = 1,2. (16)

Note that the amplitudes of viscosity and temperature perturbations are not independent. Specifically,

Λk(y) = βk(y)θk(y), (17)

where

βk(y) = −CkmkDk

T 2
sk

eDk/Tsk . (18)

Relation (17) is obtained by perturbing the viscosity law, expanding into Taylor series, and neglecting nonlinear terms.
The stability equations are subject to the following boundary conditions:

• no slip at the channel walls:

φ1 = φ′
1 = 0 aty = 1,

φ2 = φ′
2 = 0 aty = −ε; (19a)

• continuity of velocity at the interface:

φ1 = φ2; φ′
1 − φ′

2 = φ1

c − us1

{
u′
s2

− u′
s1

}
aty = 0; (19b)

• continuity of shear stress at the interface:

µs1

(
φ′′

1 + α2φ1
) + u′

s1
β1θ1 = µs2

(
φ′′

2 + α2φ2
) + u′

s2
β2θ2 aty = 0; (19c)

• continuity of normal stress at the interface:

µs2φ
′′′
2 + µ′

s2
φ′′

2 − (
3µs2α

2 + iα Re r2us2

)
φ′

2 + (
µ′
s2
α2 + iα Re r2u

′
s2

)
φ2 − µs1φ

′′′
1 − µ′

s1
φ′′

1

+ (
3µs1α

2 + iα Reus1

)
φ′

1 − (
µ′
s1
α2 + iα Reu′

s1

)
φ1 − c

[
iα Reφ′

1 − iα Re r2φ
′
2
]

= iα Re
(
F + α2S

) φ1

c − us1

aty = 0; (19d)

• constant temperature at the channel walls:

θ1 = 0 aty = 1, θ2 = 0 aty = −ε; (19e)

• continuity of temperature at the interface:

φ1

c − us1

{
T ′
s1

− T ′
s2

} = θ2 − θ1 aty = 0; (19f)

• continuity of heat flux at the interface:

θ ′
1 = K2θ

′
2 aty = 0. (19g)

In the equations above,S = σ̄ /(ρ̄1U
2
0l̄1) andF = (r2 − 1)ḡl̄1/U

2
0 are dimensionless groups accounting for the effects of

interfacial tension and gravitational acceleration. It should be noted that the true interfacial conditions must be imposed at the
deflected interface [6]. The linearized interfacial conditions (19b), (19c), (19d), (19f), (19g) were derived by considering Taylor
series expansions about the undisturbed interface(y = 0) and neglecting quadratic terms.
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(a) (b)

Fig. 2. Convergence test: (a) real, and (b) imaginary part of the complex disturbance velocity.m2 = 0.1, K2 = 4.5, Pr1 = 144, Pr2 = 7.35,
D2 = 0.83, r2 = 1, ε = 1, Re = 0.1, F = S = 0, α = 1.

2.3. Numerical solution

The linear stability problem formulated in the previous section is solved using a Chebyshev-pseudospectral technique. Each
layer (−ε � y � 0 and 0� y � 1) is separately transformed into−1 � Y � 1, and in the transformed domain, the disturbance
amplitudesφk , θk are expanded into series of Chebyshev polynomials of the first kind:

φk =
N∑

n=0

a
(k)
n Tn(Y ), θk =

N∑
n=0

b
(k)
n Tn(Y ), k = 1,2,

introducing a total of 4(N + 1) unknowns.
The stability governing equations (Eqs. (15) and (16)) are enforced at the collocation points

Yj = cos

(
πj

N − 3

)
, j = 0,1, . . . ,N − 3,

yielding 4(N − 2) equations. These equations are augmented by the discrete versions of the 12 boundary conditions, bringing
the total number of equations to 4(N + 1). The formulation leads to a generalized matrix eigenvalue problem of the form
Ax = cBx, which is solved using the IMSL routinedgvccg.

The convergence of the pseudospectral technique is tested in terms of the error in the eigenvalue with the smallest imaginary
part. In Fig. 2, the errors in the real and imaginary parts of the eigenvalues are plotted versus the number of polynomials in the
Chebyshev expansions for various wall temperature differences�T . The flow parameters arem2 = 0.1, K2 = 4.5, Pr1 = 144,
Pr2 = 7.35,D2 = 0.83, r2 = 1, ε = 1, Re = 0.1, F = S = 0, andα = 1. For each value of�T , the real and imaginary parts of
the eigenvalue converge for values ofN as small as ten. Typically, for smallRe, up toN = 16 terms were used in each layer.
For large values of the Reynolds number,N needs to be increased up to 30. The effect of collocation points on convergence of
the eigenvalue problem is investigated in detail in [14].

3. Long-wave disturbances

In the long-wave asymptotic limit(α → 0), a regular expansion in powers ofα is considered,

φk ∼ φ0k + αφ1k + O
(
α2), k = 1,2,

θk ∼ θ0k + αθ1k + O
(
α2), k = 1,2,

c ∼ c0 + αc1 + O
(
α2). (20)

Here, the first subscript denotes the order of approximation and the second subscript the layer number. Substituting into
Eqs. (15), (16), (19a)–(19g) and comparing coefficients ofαn, we obtain a sequence of problems.
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At α0:

µskφ
′′′′
0k + 2µ′

sk
φ′′′

0k + µ′′
sk
φ′′

0k + u′
sk
βkθ

′′
0k + (

2u′
sk
β′
k + 2u′′

sk
βk

)
θ ′
0k + (

u′
sk
β′′
k + 2u′′

sk
β′
k + u′′′

sk
βk

)
θ0k = 0,

k = 1,2, (21a)

θ ′′
0k = 0, k = 1,2, (21b)

subject to

φ01 = φ′
01 = 0 aty = 1, φ02 = φ′

02 = 0 aty = −ε, (21c)

φ01 = φ02; φ′
01 − φ′

02 = φ01

c0 − us1

{
u′
s2

− u′
s1

}
aty = 0, (21d)

µs1φ
′′
01 + u′

s1
β1θ01 = µs2φ

′′
02 + u′

s2
β2θ02 aty = 0, (21e)

µs2φ
′′′
02 +µ′

s2
φ′′

02 = µs1φ
′′′
01 + µ′

s1
φ′′

01 aty = 0, (21f)

θ01 = 0 aty = 1, θ02 = 0 aty = −ε, (21g)

φ01

c0 − us1

{
T ′
s1

− T ′
s2

} = θ02− θ01 aty = 0, (21h)

θ ′
01 = K2θ

′
02 aty = 0. (21i)

At α1:

µskφ
′′′′
1k + 2µ′

sk
φ′′′

1k + µ′′
sk
φ′′

1k + (c0 − usk )rki Reφ′′
0k + u′′

sk
rki Reφ0k + u′

sk
βkθ

′′
1k + (

2u′
sk
β′
k + 2u′′

sk
βk

)
θ ′
1k

+ (
u′
sk
β′′
k + 2u′′

sk
β′
k + u′′′

sk
βk

)
θ1k = 0, k = 1,2, (22a)

θ ′′
1k + (c0 − usk )(irk Re Prk /mk)θ0k + (

irk Re Prk T
′
sk
/mk

)
φ0k = 0, k = 1,2, (22b)

subject to

φ11 = φ′
11 = 0 aty = 1, φ12 = φ′

12 = 0 aty = −ε, (22c)

φ11 = φ12 aty = 0, (22d)

c1
(
φ′

01 − φ′
02

) + (c0 − us1)
(
φ′

11 − φ′
12

) = φ11
{
u′
s2

− u′
s1

}
aty = 0, (22e)

µs1φ
′′
11 + u′

s1
β1θ11 = µs2φ

′′
12 + u′

s2
β2θ12 aty = 0, (22f)

µs2φ
′′′
12 +µ′

s2
φ′′

12 + (c0 − us2)r2i Reφ′
02 + u′

s2
r2i Reφ02− µs1φ

′′′
11 − µ′

s1
φ′′

11 − (c0 − us1)i Reφ′
01 − u′

s1
i Reφ01

= i ReFφ01

c0 − us1

aty = 0, (22g)

θ11 = 0 aty = 1, θ12 = 0 aty = −ε, (22h)

φ11
{
T ′
s1

− T ′
s2

} + c1(θ01− θ02) = (c0 − us1)(θ12− θ11) aty = 0, (22i)

θ ′
11 = K2θ

′
12 aty = 0. (22j)

Note that, in the limitα → 0, gravity(F �= 0) does not enter the zeroth-order problem and interfacial tension(S �= 0) enters
neither the zeroth-nor the first-order problem. Furthermore, the zeroth-order solution is real and the first-order solution is purely
imaginary. Therefore, stable/unstable conditions are determined by the sign ofc1.

Problems (21a–i) and (22a–j) along with the normalization equation

φ01 + αφ11 = 1, (22k)

were discretized by a Chebyshev-pseudospectral technique and the resulting system of equations was solved using the software
packageminpack.

To assess the accuracy of the stability calculations, the eigenvalues calculated by the method outlined in Section 2.3 is
compared to those computed using the asymptotic formulation forα → 0 presented in this section. Table 2 shows that, for
smallα, the agreement is excellent.
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Table 2
Comparison of asymptotic and numerical results.m2 = 0.1, K2 = 4.5, Pr1 = 144, Pr2 =
7.35,D2 = 0.83, r2 = 1, ε = 1, Re = 0.1,F = S = 0, α = 1× 10−3 andN = 16

�T (K) c (asymptotic) c (numerical)

20 1.55256+ i2.06709× 10−5 1.55256+ i2.06703× 10−5

40 1.43523+ i2.11223× 10−5 1.43523+ i2.11230× 10−5

60 1.32724+ i1.65480× 10−5 1.32724+ i1.65477× 10−5

80 1.23057+ i9.80570× 10−6 1.23057+ i9.80524× 10−6

4. Results and discussion

Two combinations of immiscible liquids are considered: silicone/water and transformer oil/water (water at the bottom layer
in both cases). ConstantsCk andd̄k , k = 1,2, are found from empirical viscosity–temperature curves for reference temperature
T ref = T cold = 20◦C and are listed together with other relevant physical properties in Table 3. Dimensionless ratios that depend
only on fluid transport properties are summarized in Table 4. Since the densities of silicone, transformer oil, and water are very
close to each other at the reference temperature, the value ofr2 = ρ̄2/ρ̄1 is set equal to one. Note thatT cold is chosen as the
reference temperature here and top (or bottom) wall is heated to create a temperature difference. Alternatively,T hot could be
chosen as reference temperature as well. In other words, heating or cooling of the fluid are terms that depend on the arbitrary
choice of hot or cold wall temperatures as reference temperature. However, the stability governing equations would remain
the same whetherT cold or T hot is chosen as reference temperature. In order to prove this point, a test was performed by
choosingT ref = T hot = 100◦C as reference temperature and the results are compared withT ref = T cold = 20 ◦C case. When
T hot is chosen as reference temperature, fluid properties take the following values for silicone/water pair:C1 = 3.722× 10−3,
d̄1 = 2087.2 K, C2 = 9.601× 10−3, d̄2 = 1733.6 K, Pr1 = 39.11, Pr2 = 1.75,m2 = 0.13,D2 = 0.83,K2 = 5.85. Results of
this comparison is shown in Table 5. As one can see, the results are very close to each other, suggesting that results with respect
to stabilization/destabilization are the same when reference temperature is changed fromT cold to T hot You and Herwig [15]
propose to use the centerline temperatureT c as reference temperature.

Table 3
Properties of fluids considered in this study

Liquid c̄p (20 ◦C) k̄ (20 ◦C) µ̄ (20 ◦C) µ̄ (100◦C) C d̄

(kJ/kg·K) (W/m·K) (N·s/m2) (N·s/m2) (K)

Water 4.1818 0.598 1.0× 10−3 0.282× 10−3 2.702× 10−3 1733.6
Silicone 2.06 0.133 9.71× 10−3 2.11× 10−3 8.087× 10−4 2087.2
Transformer oil 4.2159 0.111 21.1× 10−3 1.741× 10−3 8.836× 10−6 3411.3

Table 4
Dimensionless ratios for silicone/water and transformer oil/water

Layer 1
Layer 2 m2 K2 Pr1 Pr2 D2

Silicone
Water 0.1 4.5 144 7.35 0.83

Transformer oil
Water 0.05 6 325 7.35 0.53

Table 5
Reference temperature test for silicone/water pair. Fixed parameters:Re = 0.1, F = S = 0, r2 = 1,
ε = 2,�T = 80 K

α c (T B = T ref = 20 ◦C, heating from top) c (T A = T ref = 100◦C, cooling from bottom)

0.1 1.5324+ i0.1305E–02 1.5342+ i0.1391E–02
0.5 1.3943+ i0.2481E–02 1.3902+ i0.2512E–02
1.0 1.2084+ i0.2397E–02 1.2022+ i0.2446E–02
1.5 1.1058+ i0.4279E–02 1.1025+ i0.4303E–02
2.0 1.0567+ i0.5103E–02 1.0535+ i0.5111E–02
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4.1. General remarks

The effect of temperature and viscosity fluctuations on theshear mode of instability in high-Reynolds-numbersingle layer
plane Poiseuille flow has been shown to be small [16,17]. In contrast, their effect on theinterfacial mode of instability in
two-layer flow can be significant, as can be seen in Fig. 3, where the disturbance growth rate is plotted against the disturbance
wavenumberα for �T = 10 K and�T = 50 K. The flow system is silicone/water (see Table 4 for dimensionless parameters that
depend on fluid transport properties) and the remaining parameters are set toε = 0.5, Re = 0.1,F = S = 0. Curves correspond-
ing to the simplified formulation, in which temperature and viscosity fluctuations are neglected, as well as curves corresponding
to the full formulation, which includes all fluctuations, are presented for each�T . The effect of temperature and viscosity fluc-
tuations is appreciable for wavenumbersα � 8, and, as expected, becomes more pronounced as the applied wall temperature
difference�T increases. All results presented in the remaining part of this paper are obtained based on the full formulation.

Typical profiles of the disturbance streamfunction amplitude,φ, and disturbance temperature amplitude,θ , are shown in
Figs. 4 and 5. In both figures, a transformer oil/water combination is considered (see Table 4) andε = 1, F = S = 0, α = 3.
Each eigenvector of the generalized matrix eigenanalysis problemAx = cBx is normalized by setting its Euclidean norm equal
to unity. In Fig. 4,�T is varied while in Fig. 5, the effect of the Reynolds number is shown. The streamfunction amplitude
reaches its maximum in the vicinity of the interface while the maximum temperature amplitude is located at the interface. As
expected on physical grounds, increasing the wall temperature difference�T affects predominantly the temperature amplitude
distribution, whileRe affects mostly the disturbance streamfunction amplitude and to a lesser degree the disturbance temperature
amplitude.

Fig. 3. Effect of temperature and viscosity fluctuations on the growth rate of disturbances. Silicone/water,r2 = 1, ε = 0.5, Re = 0.1,F = S = 0.

(a) (b)

Fig. 4. Amplitude of disturbance streamfunction (a), and disturbance temperature (b) for various�T . Transformer oil/water,r2 = 1, ε = 1,
Re = 0.1, F = S = 0, andα = 3.
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(a) (b)

Fig. 5. Amplitude of disturbance streamfunction (a), and disturbance temperature (b) for various Reynolds numbers. Transformer oil/water,
r2 = 1, ε = 1,F = S = 0, α = 3,�T = 40 K.

4.2. Stabilizing the interface

The effect of�T on the marginal stability curves in the(α–ε) plane is presented in Fig. 6. The liquid pair is silicone/water
and (Re,F,S) is set to(0.1,0,0). Positive�T corresponds to a hot top wall, while negative values of�T signify a hot bottom
wall. Note that in the present study,T (y) � T ref = T cold = 20 ◦C. Consequently, since the viscosity of both liquids decreases
as|�T | increases, the maximum of the dimensionless base velocity shifts towards the upper wall when the top wall is heated,
while the maximum of the dimensionless base velocity shifts towards the lower wall when the bottom wall is heated. Under
isothermal conditions and in the absence of surface tension, the flow configuration withε = √

m2 = constant is neutrally stable
to disturbances of all wavenumbers (see Fig. 6(a)). For this configuration, the slope of the base velocity is zero at the interface,
and hence continuous across the interface. Under nonisothermal conditions, the neutral stability lineε = √

m2 disappears. The
structure of the marginal stability curves depend strongly on the sign of�T . When the upper plate is heated, the unstable
regions in the(α–ε) plane grow at the expense of stable regions as�T increases (see Fig. 6(a–c)). When the lower plate is
heated, increasing|�T | can be stabilizing or destabilizing depending on the values ofε andα (see Fig. 6(d–e)). A thin layer
of the less viscous fluid adjacent to the wall (smallε) becomes unstable to disturbances of long and intermediate wavelengths.

(a) (b) (c)

(d) (e)

Fig. 6. Marginal stability curves for various wall temperature differences�T . Silicone/water,r2 = 1, Re = 0.1,F = S = 0. Shaded regions are
unstable, unshaded regions are stable: (a)�T = 0 K; (b) �T = 20 K; (c)�T = 50 K; (d)�T = −20 K; (e)�T = −50 K.
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(a) (b) (c)

(d) (e)

Fig. 7. Marginal stability curves forS = 0.01. Silicone/water,r2 = 1, Re = 0.1, F = 0, S = 0.01: (a) �T = 0 K; (b) �T = 20 K;
(c) �T = 50 K; (d)�T = −20 K; (e)�T = −40 K.

This unstable region in the(α–ε) plane grows towards higher values ofα as |�T | increases. On the other hand, maintaining
the lower wall at a higher temperature stabilizes long-, intermediate- and short-wave disturbances for configurations around
ε ≈ 0.3. For 0.24� ε � 0.43 and�T = −50 K, the system is stable for allα. This means that, by heating the bottom plate, we
can achieve a window of stable operating conditions in practical applications.

The combined effect of surface heating and interfacial tension is shown in Fig. 7. In all casesS = 0.01, which is a reasonable
value for silicone/water system. The remaining parameter values are identical to those of Fig. 6. When�T = 0, comparison of
Fig. 7(a) with Fig. 6(a) reveals that the inclusion of interfacial tension ruptures the neutral stability lineε = √

m2. In general, in
the presence of interfacial tension, an applied positive or negative wall temperature difference can be stabilizing or destabilizing
depending on the values ofε andα. Fig. 7(a–c) shows that the stable region observed for small values ofε decreases as�T

increases. More importantly, a comparison of Fig. 6(d–e) and Fig. 7(d–e) shows that, for�T < 0, interfacial tension stabilizes
shortwaves(α > 5), and increasing|�T | predominantly stabilizes disturbances ofα < 2. As a result of the combined effects
of nonzeroS and increasing|�T |, the width of the stable operating window of Fig. 6 is increased to 0.11� ε � 0.63 (compare
Figs. 6(e) and 7(e)).

Note that in high-Reynolds-number single-layer plane Poiseuille flow, an imposed wall temperature difference�T is always
destabilizing (see [18] for water flow; also [16]). In contrast, for the interfacial instability mode in the two-layer flow considered
here, increasing the magnitude of the applied wall temperature difference can be stabilizing or destabilizing depending on the
disturbance wavenumber, the flow configuration (thickness ratio), and the sign of�T .

In isothermal flow, a thin layer of the more viscous fluid adjacent to the wall is always linearly unstable, while a thin
layer of the less viscous fluid adjacent to the wall is stable provided that there is enough surface tension at the interface (see,
for example, [19,2,3]). This phenomenon is usually referred to as the ‘thin layer’ effect. For the flow systems chosen in this
study, the more viscous liquid lies at the upper layer and consequentlyε � 1 corresponds to a thin layer of the more viscous
liquid adjacent to the upper wall. Examining Figs. 6 and 7, it is seen that the results, even under nonisothermal conditions,
are in agreement with the thin layer effect reported for isothermal flows. Note that although the analysis is extended forε up
to 10, here marginal stability curves are presented only for 0� ε � 2 or sometimes 0� ε � 3. The flow is always unstable for
large values ofε. Figures 6(b–c) and 7(b–c) show that stable configurations of thin layers of the less viscous fluid next to the
wall (ε � 1 in the present study) persist in the case of positive wall temperature difference�T . Configurations withε � 1
are stable to disturbances of wavenumber 0< α < 10 although this region contracts slightly as�T increases. On the other
hand, when�T < 0, thin layers of the less viscous fluid next to the wall are stable only for intermediate to short wavelengths
(see Figs. 6(d–e) and 7(d–e)). For long and lower-intermediate wavelengths, there is an unstable region which propagates to
intermediate wavelengths as|�T | increases. This result contrasts the stability results reported for isothermal plane Poiseuille
flow [6] and for isothermal Couette flow [19] where a thin layer of the less viscous fluid is stable to long-wave disturbances.
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5. Conclusions

A linear stability analysis of nonisothermal two-layer plane Poiseuille flow has been presented. The temperature profile is
assumed linear within each layer and the viscosity-temperature relation is exponential. Two-dimensional velocity, pressure,
temperature, and viscosity fluctuations are included in the analysis. The role of varying the applied temperature difference�T

and interfacial tensionS is investigated.
The stability of the interface is primarily investigated for two combinations of immiscible liquids: silicone/water and

oil/water (water at the bottom layer in both cases). The analysis indicates that in the absence of density stratification, increasing
the wall temperature difference�T can stabilize or destabilize the interface depending on the layer thickness ratio and the
disturbance wavelength. Interfacial tension has a stabilizing effect on the interface. The stabilizing influence of surface tension
is observed at intermediate and large wavenumbers. A thin layer of the more viscous liquid adjacent to the wall (ε � 1 in this
study) is found to be always unstable under isothermal as well as nonisothermal conditions. In contrast, a thin layer of the
less viscous fluid next to the wall (ε � 1 in the present study) is stable for all wavelengths if the system is heated from the
top and enough interfacial tension is present. If the lower wall is maintained at higher temperature, interfaces corresponding
to ε � 1 are stable to disturbances of intermediate and large wavenumbers only. Most importantly, the results suggest that by
heating the flow system from the bottom and having adequate surface tension, one can obtain large stable operating windows
(ε0 − �ε � ε � ε0 + �ε) where the flow system is stable to disturbances of any wavelength.
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